Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Nature ; 602(7896): 343-348, 2022 02.
Article in English | MEDLINE | ID: covidwho-1671588

ABSTRACT

Carbapenems are antibiotics of last resort in the clinic. Owing to their potency and broad-spectrum activity, they are an important part of the antibiotic arsenal. The vital role of carbapenems is exemplified by the approval acquired by Merck from the US Food and Drug Administration (FDA) for the use of an imipenem combination therapy to treat the increased levels of hospital-acquired and ventilator-associated bacterial pneumonia that have occurred during the COVID-19 pandemic1. The C6 hydroxyethyl side chain distinguishes the clinically used carbapenems from the other classes of ß-lactam antibiotics and is responsible for their low susceptibility to inactivation by occluding water from the ß-lactamase active site2. The construction of the C6 hydroxyethyl side chain is mediated by cobalamin- or B12-dependent radical S-adenosylmethionine (SAM) enzymes3. These radical SAM methylases (RSMTs) assemble the alkyl backbone by sequential methylation reactions, and thereby underlie the therapeutic usefulness of clinically used carbapenems. Here we present X-ray crystal structures of TokK, a B12-dependent RSMT that catalyses three-sequential methylations during the biosynthesis of asparenomycin A. These structures, which contain the two metallocofactors of the enzyme and were determined in the presence and absence of a carbapenam substrate, provide a visualization of a B12-dependent RSMT that uses the radical mechanism that is shared by most of these enzymes. The structures provide insight into the stereochemistry of initial C6 methylation and suggest that substrate positioning governs the rate of each methylation event.


Subject(s)
Carbapenems/biosynthesis , Methyltransferases/chemistry , Methyltransferases/metabolism , S-Adenosylmethionine/metabolism , Streptomyces/enzymology , Thienamycins/biosynthesis , Vitamin B 12/metabolism , Binding Sites , Biocatalysis , Coenzymes/metabolism , Crystallography, X-Ray , Kinetics , Methylation , Models, Molecular , Protein Binding , Protein Domains , Streptomyces/metabolism , beta-Lactamase Inhibitors/metabolism , beta-Lactamases/chemistry , beta-Lactamases/metabolism
2.
Bioorg Chem ; 112: 104925, 2021 07.
Article in English | MEDLINE | ID: covidwho-1198631

ABSTRACT

Antibiotic resistance and emerging viral pandemics have posed an urgent need for new anti-infective drugs. By screening our microbial extract library against the main protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the notorious ESKAPE pathogens, an active fraction was identified and purified, leading to an initial isolation of adipostatins A (1) and B (2). In order to diversify the chemical structures of adipostatins toward enhanced biological activities, a type III polyketide synthase was identified from the native producer, Streptomyces davawensis DSM101723, and was subsequently expressed in an E. coli host, resulting in the isolation of nine additional adipostatins 3-11, including two new analogs (9 and 11). The structures of 1-11 were established by HRMS, NMR, and chemical derivatization, including using a microgram-scale meta-chloroperoxybenzoic acid epoxidation-MS/MS analysis to unambiguously determine the double bond position in the alkyl chain. The present study discovered SARS-CoV-2 main protease inhibitory activity for the class of adipostatins for the first time. Several of the adipostatins isolated also exhibited antimicrobial activity against selected ESKAPE pathogens.


Subject(s)
Acyltransferases/metabolism , Anti-Infective Agents/chemistry , Bacterial Proteins/metabolism , Resorcinols/chemistry , Acyltransferases/antagonists & inhibitors , Acyltransferases/classification , Acyltransferases/genetics , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/classification , Bacterial Proteins/genetics , COVID-19/pathology , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Drug Evaluation, Preclinical , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Conformation , Phylogeny , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Resorcinols/isolation & purification , Resorcinols/metabolism , Resorcinols/pharmacology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Streptomyces/enzymology , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL